multiply
 Partition

Subtract the nearest multiple of 10 or 100, then adjust

$2358+773$

Partitionboth numbers and recombine
$=2000+300+50+8+700+70+3$
$=2000+1000+120+11$
$=3000+100+30+1$
=3131
Partitioning with number lines

Partition second number only into hundreds, tens and ones and recombine
$2358+773=2358+700+70+3$
$=3058+70+3$
$=3128+$
$=3131$
the nearest
100 , then adjust
$458+79=458+80-1$

Use known number facts and place value to subtract (partition second number only)

12462-2300
$=12462-2000-300$ $=10462-300$
$=10162$

Double and halve

Place Value
$\begin{aligned} 47 \times 6 & =(40 \times 6)+(7 \times 6) \\ & =(240)+(42)\end{aligned}$
$=282$
$25 \times 16=50 \times 8=100 \times 4=200 \times 2=400$
multiply whole numbers and those involving decimals by 10,100 and 1000

$\times 1000$
identify multiples, (and use them to construct equivalence statements, e.g. $4 \times$
$35=2 \times 2 \times 35.3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$)
Use a variefy of resources (including a calculator) to investigate multiples. Make models and images to display facts.
recall prime numbers up to 19
establish whether a number up to 100 is prime
Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within primes.
recognise and use square n
squared (2) and cubed (3)
Use a variety of resources (including a calculator) to investigate square an cubed numbers. Make models and images to display facts.
multiply numbers up to 4 digits by a one- or two-digit number using a formal
written method, including long multiplication for two-digit numbers
Review formal method of short multiplication (for multiplying by one digit numbers) when proficient

$$
\begin{array}{r}
452 \\
\times \quad 3 \\
\hline 1356 \\
\hline 1
\end{array} \quad \begin{array}{r}
1243 \\
\hline \quad 9624 \\
\hline 132
\end{array}
$$

Start with grid method when multiplying by 2 digit numbers
72×38 is approximately $70 \times 40=2800$ withegers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place value is essential. Align the decimal point and use 'place holders', if needed.

$$
\begin{aligned}
& \text { s/4.1.1 } \begin{array}{l}
\text { Use Diennes or place value } \\
\text { counters (add counters with 0.1) to } \\
263.0
\end{array} \\
& \begin{array}{ll}
\text { coupport understanding of } \\
\text { 26.5 } & \text { decomposition and place value. }
\end{array} \\
& \hline
\end{aligned}
$$

2160 576 $\frac{5 \%{ }^{\circ}}{\frac{575}{7}}$

Move onto formal long multiplication

\section*{| 34 |
| ---: |
| $\times \quad 13$ |
| 102 |
| 1 |
| 340 |}

Then formal multiplication with more complex numbers

$$
\begin{aligned}
& \text { Partitioning } \\
& \begin{aligned}
72 \div 3 & =(60 \div 3)=(12 \div 3) \\
& =20+4 \\
& =24
\end{aligned}
\end{aligned}
$$

divide whole Place Value

identity factors, including finding all factor pairs of a number, and common factors of two numbers (and use them to construct equivalence statements, e.9 $4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$

Use a variety of resources (including a calculator) to investigate factors. Make models and images to display facts.
recall prime numbers up to 19
establish whether a number up to 100 is prime
Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within primes.
divide numbers up to 4 digits by a one-digit number using the formal writt method of short division and interpret remainders appropriately for the context (as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4$ $\left.24 r 2=24 \frac{1}{2}=24.5 \sim 25\right)$

Bus shelter method (short division)

Introduce long division (dividing by single digits)
$256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$

256		
$-\frac{70}{186}$	(10 groups)	or (10×7)
$-\frac{140}{46}$	$(20$ groups $)$	or (20×7)
$-\frac{42}{4}$	$\frac{(6 \text { groups })}{}$ or (6×7)	
$(36$ groups $)$ or (36)		

Year 5

