
add numbers with up to three digits, using formal written methods of columnar addition (See Appendix 1)

Extend mental method of partitioning and recombining. $\begin{aligned} 158+72 & =100+(50+70)+(8+2) \\ & =100+120+10 \\ & =230 \end{aligned}$	Vertical expansion	n367 +185 12 140 550
Column addition $\begin{array}{r} 367 \\ +185 \\ \hline 552 \\ \hline 11 \end{array}$	Including money$\begin{array}{r} £ 2.50 \\ +£ 1.75 \\ \hline £ 4.25 \end{array}$	
- ร8: $\therefore 0 \longrightarrow 8888$ Use base 10 (diennes) or place value counters to support understanding hundred and 9 the hundreds. of carrying and to ensure conceptua inderstanding of place value:		
$\begin{array}{ll}\begin{array}{ll}\text { If child den are experiencing per sistent diffieulties, }\end{array} & \begin{array}{l}200+40+6 \\ \text { they could use the partitioned column mefthod with } \\ \text { carrying (using Diennes for support): }\end{array}\end{array} \begin{aligned} & \frac{30+6}{} \frac{300+20+2}{10010}\end{aligned}$		

- two two-digit numbers (including answer crossing 100)

recall and use multiplication facts for the 3,4 and 8 multiplication \quad recall and use division facts for the 3,4 and 8 multiplication tables tables

Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts.
Investigate patterns within tables.

Play games, chant, test etc to increase speed of recalling facts.
understand and use mental methods using commutativity and
associativity (for example, $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
Use a variety of resources (including a calculator) to investigate order of
multiplication.
Make models and images to display facts.
understand and use mental methods using multiplication a facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts (e.g. $30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$)

$30 \times 5=150$	$50 \times$	$5=30$	$150 \div 3=50$
	$3 \times 5=15$	$15 \div 3=5$	
$3 \times 50=150$			$150 \div 30=5$
	$5 \times 3=15$	$15 \div 5$	

$5 \times 30=150 \quad 50 \times 30=1500 \quad 30 \times 50=1500 \quad 150 \div 50=3$
subtract numbers with up to three digits, using formal written methods of columnar subtraction (See Appendix 1)

Use base 10 (diennes) as a practical method to introduce exchanging
$31-18=13$

$$
\|\|\rightarrow\|\|^{\circ} \rightarrow \|^{i}
$$

When pupil(s) are confident in doing this practically and verbalizing the calculation, begin to record using partitioned column method:

201	When secure with exchanging, use partitioned docolumn ethod to solve calculations involving 3igig numbers Repeating the practical stage if
$\frac{30+1}{-10+8}$	$10+3$

$\frac{-10+8}{10+3} \quad \begin{aligned} & \text { calculations involving } 3 \text { digit numbers } \\ & \text { Repeating the practical stage if }\end{aligned}$ necessary.
Introduce Column Subtraction without decomposition
$\begin{array}{r}458 \\ -\quad 232 \\ \hline 226\end{array}$

Number - addition and subtraction

solve problems, including missing number problems, using number facts, place value, and more complex addition	solve problems, including missing number problems, using number facts, place value, and more complex subtraction	solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and	solve problems, including missing number problems, involving division, including positive integer scaling problems and
Missing numbers should be placed in all possible places: $\begin{array}{ll}3+4= & =4+3 \\ 3+=7 & 7=+4\end{array}$ $4+=7 \quad 7=3+$ $+\nabla=7 \quad 7=+\nabla$	Missing numbers should be placed in all possible places:	objects solve simple problems in contexts, deciding which of the four operations to use and why Missing numbers placed in all possible places. $7 \times 2=\quad=2 \times 7$	objects solve simple problems in contexts, deciding which of the four operations to use and why Missing numbers placed in all possible places. $6 \div 2=\quad=6 \div 2$
Use all the models and images mentioned above. Discuss which is most effective and why.	Use all the models and images mentioned above. Discuss which is most effective and why.	$7 \times=14$ $14=\times 7$ $\times 2=14$ $14=2 \times$ $\times \nabla=14$ $14=\times \nabla$	$6 \div=3$ $3=6 \div$ $\div 2=3$ $3=\div 2$ $\div \nabla=3$ $3=\div \nabla$
Singapore Bar Method	Singapore Bar M		
		```2\times6=3\times and using three numbers 10x x = 60 12=2x x 2```   Use all the models and images mentioned above. Discuss which is most effective and why.   Singapore Bar Method	$12 \div 6=8 \div$   and using three numbers   $10 \div 5 \div=1 \quad 3=12 \div \div$   Use all the models and images mentioned above. Discuss which is most effective and why.   Singapore Bar Method
larger quantity   smaller quantity	larger quantity   smaller quantity		$\overbrace{\underbrace{}_{\text {part }}}^{\underbrace{\text { Whole }}}$
ntity + difference $=$ larger quantity	ence		
estimate the answer to a calculation and use inverse operations to check answers   Estimate answers before solving any calculation.   Once inverse operation has been learnt use as a method for checking.	estimate the answer to a calculation and use inverse operations to check answers   Estimate answers before solving any calculation.   Once inverse operation has been learnt use as a method for checking.	write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods   See models and images above.	write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods   See models and images above.
use a variety of language to describe addition   +, add, addition, more, plus, make, sum, total, altogether, score, double, near double, one more, two more... ten more... one hundred more, how many more to make...? how many more is... than ..? how much more is...?   = equals, sign, is the same as   tens boundary, hundreds boundary	use a variety of language to describe subtraction   - subtract, subtraction, take (away), minus, leave, how many are left/left over? one less, two less... ten less... one hundred less, how many fewer is... than...? how much less is...? difference between, half, halve   $=$ equals, sign, is the same as	use a variety of language to describe multiplication   count, count (up) to, count on (from, to), count back (from, to), count in ones, wos, threes, fours, fives... count in tens, hundreds, lots of, groups of, 0 , times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times...times as (big, long, wide... and so on), repeated addition, array, row, column   $=$ equals, sign, is the same as	use a variety of language to describe division   Array, row, column, halve, share, share equally, one each, two each, three each. group in pairs, threes... tens, equal groups of, $\div$, divide, division, divided by, divided into, left, left over, remainder   = equals, sign, is the same as

