perform mental calculations, inc
large numbers (and decimals)
Partition both numbers into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =30+5+0.8+7+0.3 \\
& =30+12+1.1 \\
& =42+1.1 \\
& =43.1
\end{aligned}
$$

Partition second number only into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =35.8+7+0.3 \\
& =42.8+0.3 \\
& =43.1
\end{aligned}
$$

Add the nearest whole number then adjust
$52+11.9=52+12-0.1$
$=64-0.1$
$=63.9$
practise addition for larger numbers, using the
methods of columnar addition (see Appendix 1)

Extend the use of compact column method to adding several numbers with_mixed decimals.

Children should be reminded of the importance of aligning the columns accurately.

Where there is an 'empty' space in a decimal column, pupils could insert a zero to show the value.

perform mental calculations,
large numbers(and decimals)
Use known number facts and place value to subtract

-0.4
Subtract the nearest whole number then adjust
$52-11.9=52-12+0.1$
$=40+0.1$
$=40.1$

| perform mental calculations, including with mixed operations and |
| :--- | :--- |
| large numbers(and decimals) | large numbers(and decimals)

Partitioning

$$
\begin{aligned}
4.7 \times 6 & =(4 \times 6)+(0.7 \times 6) \\
& =(24)+(4.2) \\
& =28.2
\end{aligned}
$$

Double and halve
$4.25 \times 32=8.5 \times 16$
$=17 \times 8$
$=34 \times 4$
$=68 \times 2$
$=136$
identify common factors, common multiples and prime numbers
Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make commols and images to display facts. Investigate the patterns within the numbers.
multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of short and long multiplication (Appendix 1)

Short multiplication and Long multiplication as in Year 5, but apply to numbers with decimals.

$3 \cdot 19$
$\times 8$
$25 \cdot 52$

Pupils may need reminding that single digits belong in the ones (units) column.
A sound understanding of place value and the formal method itself are required before progressing to decimal multiplication
perform mental calculations, including with mixed operations and large numbers(and decimals)

Partitioning

$7.2 \div 3$	$=(6 \div 3)=(1.2 \div 3)$
	$=2+0.4$

$=2+0.4$
$=2.4$

identify common factors, common multiples and prime numbers

Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
divide numbers up to 4 digits by a two-digit whole number usi the formal written method of short and long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context (Appendix 1)

Short division

Short division

$98 \div 7$ becomes
14
$7 \begin{aligned} & 14 \\ & 79\end{aligned}{ }^{2} 8$
$432 \div 5$ becomes
8
$543^{3} 2$
Answer: 14
Answer: 86 remainder 2
\qquad
149

Long division (for dividing by 2 digits)

Long division

$432 \div 15$ becomes

$154^{43^{2} 8}{ }^{12}$
$1 5 \longdiv { 4 3 } 2$
30

300
132

120

$432 \div 15$ becomes calculations.
Use 'place holders' to aid understanding of the value in that column.

solve addition multi-step problems in contexts, deciding which \quad solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why
se all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

round answers to a specified degree of accuracy, e.g. to the nearest 10, 20,50 etc., but not to a specified number of significant figures
Use knowledge of rounding (see fraction Policy) to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations
explore the order of operations using brackets: for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect
Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in
the context of a problem, an appropriate degree of accuracy
Estimate answers before solving any calculation
Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction

+ add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse
= equals, sign, is the same as
solve subtraction multi-step problems
operations and methods to use and why
Use all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures
Use knowledge of rounding (see fraction Policy) to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations
explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation
Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction

- subtract, subtraction, take (away), minus, decrease, leave, ho many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary inverse
= equals, sign, is the same as
solve problems involving multiplication
Use all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

round answers to a specified degree of accuracy, for example, to the nearest 10, 20,50 etc., (not to specified number of significant figures)
Use knowledge of rounding (see fraction Policy) to create estimates.
use their knowledge of the order of operations to carry ou calculations involving the four operations
explore the order of operations using brackets: for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation
Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction
\times lots of, groups of, times, multiply, multiplication, multiplied by multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column double, inverse
equals, sign, is the same as
solve problems involving division
Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

round answers to a specified degree of accuracy, e.g. to the

 nearest 10, 20, 50 etc., but not to a specified number of significant figuresUse knowledge of rounding (see fraction Policy) to create estimates.

use their knowledge of the order of operations to carry out

 calculations involving the four operationsexplore the order of operations using brackets: for example, $2+1$ $x 3=5$ and $(2+1) \times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation
Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction
Array, row, column, halve, share, share equally one each, two each three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient divisible by, inverse
equals, sign, is the same as

